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ABSTRACT: The dentate gyrus (DG) is thought to perform pattern sepa-
ration on inputs received from the entorhinal cortex, such that the DG
forms distinct representations of different input patterns. Neuronal
responses, however, are known to be variable, and that variability has the
potential to confuse the representations of different inputs, thereby hinder-
ing the pattern separation function. This variability can be especially prob-
lematic for tissues such as the DG, in which the responses can persist for
tens of seconds following stimulation: the long response duration allows for
variability from many different sources to accumulate. To understand how
the DG can robustly encode different input patterns, we investigated a
recently developed in vitro hippocampal DG preparation that generates
persistent responses to transient electrical stimulation. For 10–20 s after
stimulation, the responses are indicative of the pattern of stimulation that
was applied, even though the responses exhibit significant trial-to-trial vari-
ability. Analyzing the dynamical trajectories of the evoked responses, we
found that, following stimulation, the neural responses follow distinct paths
through the space of possible neural activations, with a different path asso-
ciated with each stimulation pattern. The neural responses’ trial-to-trial
variability shifts the responses along these paths rather than between them,
maintaining the separability of the input patterns. Manipulations that redis-
tributed the variability more isotropically over the space of possible neural
activations impeded the pattern separation function. Consequently, we
conclude that the confinement of neuronal variability to these one-
dimensional paths mitigates the impacts of variability on pattern encoding
and, thus, may be an important aspect of the DG’s ability to robustly
encode input patterns. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

The hippocampal dentate gyrus (DG) is thought to perform pattern
separation on the inputs it receives from the entorhinal cortex (Leutgeb
et al., 2007; Myers and Scharfman, 2009). In other words, the dentate
should yield distinct responses even when presented with overlapping

stimulus patterns (O’Reilly and McClelland, 1994).
Confounding this function is the fact that, even over
repeat presentations of the same stimulus, neural activ-
ities tend to be highly variable (Britten et al., 1993;
Softky and Koch, 1993; Faisal et al., 2008). This vari-
ability within the representation can confuse the repre-
sentations of different input patterns, leading us to
wonder how the dentate can robustly encode these
patterns.

The issue of robust representation in the presence of
variability has been relatively well-studied in the periph-
eral sensory systems (Romo et al., 2003; Averbeck et al.,
2006; Faisal et al., 2008; Hu et al., 2014; da Silveira
and Berry, 2014; Shamir, 2014; Cayco-Gajic et al.,
2015), where we have a rapidly deepening understand-
ing of how robust population codes can be constructed
from variable single-cell responses. While similarly high
levels of variability are observed in the “deeper” cortical
structures, our understanding of how those systems
form robust representations is relatively poor. The
problem of robustness is especially important in the
context of persistent mnemonic (symbolic) representa-
tions—involved in functions such as working mem-
ory—where the long duration of the representation
means that there is ample time for noise from different
sources to accumulate.

To address the questions of robust sustained pattern
encoding, we exploited a recently developed in vitro
hippocampal DG preparation that exhibits sustained
responses to electrical stimulation that last for more
than 20 s after the stimulus is turned off (Hyde and
Strowbridge, 2012). Importantly, no pharmacological
manipulations are needed to trigger these persistent
activities: they are innate properties of the tissue. We
previously (Hyde and Strowbridge, 2012) demon-
strated that these responses, when averaged over the
duration of the response, could be decoded on a trial-
by-trial basis to reveal the pattern of stimulation that
was applied. Does the same separability persists on
shorter time scales—so that, at any epoch, the stimu-
lation patterns can be distinguished based on the cur-
rent neural activations? Or are the patterns only
separable after lengthy integration of the neural
responses that can “average away” the variability? For
example, in Figure 1A, the responses to different stim-
uli overlap relatively little on an epoch-by-epoch and
trial-by-trial basis, and, so, they could be decoded in
short time windows to recover the applied stimulus.
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For contrast, in Figure 1B, there are epochs at which the
responses to different stimuli overlap significantly, and, so, the
responses could not be accurately decoded, on an epoch-by
epoch and/or trial-by-trial basis, to recover the stimulus
identity.

Herein, we find that the stimulation patterns can be distin-
guished, epoch-by-epoch, based on the neural activations on
individual trials, for up to 20 s following stimulation. Next, we
identify the structure of the neural responses that maintains the
separability of input patterns over time. Given that a brain that
required long integration times to identify input patterns would
lead to slow behavioral reactions, the neural response structures
we identified—that allow for pattern encoding using short inte-
gration windows—could be important to the hippocampus’
(and, thus, the brain’s) reaction speed.

More specifically, we found that, following stimulation, the
activities of neural populations in our hippocampal preparation
tend to travel along distinct paths in the space of possible neural
activations, with a different path for each applied stimulus. This
observation suggests that the stimulus identity is most persis-
tently reflected in the identity of the path on which the neural
responses lie, rather than any specific pattern of neural activities
over the population. The variability in the neural responses tends
to spread the response trajectories out along the appropriate paths
rather than between them. Our results show that this structure
makes the neural representation of input patterns more robust
because the noise tends not to push the responses toward the
“other” paths, corresponding to stimuli other than the one that
was presented (for illustration, compare Fig. 1A,B).

MATERIALS AND METHODS

Experimental Setup

Herein, we revisit the data from a previous study (Hyde and
Strowbridge, 2012). The preparation consists of horizontal sli-

ces of rat brain that pass through the hippocampal formation.
In each slice, we identified the perforant path (PP, which pro-
vides inputs to the hippocampus from the entorhinal cortex)
and implanted an array of stimulating electrodes into the PP
(Fig. 2A). We then transiently stimulated the PP with brief
(200 ls) shocks from one of the four stimulating electrodes,
and thereafter, we recorded intracellularly from triplets of
mossy cells (MCs) in the DG (Scharfman and Schwartzkroin,
1988). Hilar MCs have extensive dendritic arbors, and, there-
fore, they broadly sample the population of upstream granule
cells and semilunar granule cells (Fig. 2A) (Williams et al.,
2007; Larimer and Strowbridge, 2010). For our analyses, we
extracted the rates of excitatory postsynaptic potentials (EPSPs)
received by our three MCs, measured over 1-s-long intervals at
different times poststimulation (from 1 s up to >20 s
poststimulation).

Each stimulus was applied between three and five times, and
a total of four different stimuli were applied to each slice.
Owing to the long duration of the evoked responses, there was
a 210-s delay between subsequent stimulation events, to allow
the tissue to return to its resting state. The amount of time per
trial (210 s) and the limited (�1 h) duration of the slice
experiments restricted the number of repeats of each stimulus.
The experiment and associated analyses were repeated on nine
different slices. The data from each slice were analyzed sepa-
rately, and the results reported herein are the average quantities
(averaged over those nine slices).

In vivo, stimuli will not necessary arrive in isolation and well-
separated in time: randomly timed barrages of stimuli are more
likely. In our recordings, however, the stimuli were intentionally
well-separated in time, so that the network synaptic activity
assayed by intracellular recordings could return to its baseline
activity level between stimuli. For contrast, if the stimuli were
more closely spaced and the activity levels did not return to the
resting state between stimuli, then contextual effects [as in
(Hyde and Strowbridge, 2012)] would impact the neural activity

FIGURE 1. Constraining fluctuations near stimulus-evoked
response trajectories may yield robust representations. In the cartoons
(A and B), we consider the space of all possible neural responses. Each
axis in the space is the response of a given neuron, and the dimension-
ality of the space is equal to the number of neurons in the population.
Within this space, we consider the dynamical trajectories of the evoked
neural responses. The cartoons show both the mean response trajecto-
ries (solid line), and two example trajectories—observed on different

trials (dashed lines)—generated in response to two different stimuli. In
(A), the variability is structured such that responses to each stimulus
remain close to the mean trajectory. For contrast, in (B), the trial-by-
trial fluctuations are more spread out from the mean trajectory. Accord-
ingly, the responses to different stimuli in (B) overlap more—and, thus,
the stimulus identity is more ambiguously encoded in the neural activ-
ities. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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patterns. Our experimental protocol removed this confound,
allowing us to cleanly investigate the neural activity patterns
responsible for encoding the stimulation position.

Decoding the Mossy Cell Responses

To quantify the representation of the applied stimulation
patterns by the hilar neural activities, we sought to estimate the
applied stimulus given the resultant neural activities. To do so,
we used the standard k-nearest neighbors (kNN) algorithm, as

follows. For each experiment, we went through the recorded
data points one by one and tried to guess which stimulus gen-
erated the recorded response (each data point is the mean
EPSP rates of the three cells in a given 1-s-long window, on a
given trial, of a given stimulus). For each such “test” data
point, we computed the K nearest-neighboring data points
from that experiment (smallest Euclidean distance). In other
words, among all the time epochs, trials, and stimuli, we found
those data points most similar to the test point. Next, we took
a majority vote over the stimulus labels from those K neighbors

FIGURE 2. Persistent mnemonic representations formed by
variable neural activities. (A) (Left) Diagram of excitatory synaptic
connections within the dentate gyrus. Perforant path (PP) input
from entorhinal cortical neurons excites both granule cells (GC)
and semilunar granule cells (SGCs). Both cell types are excitatory
and project toward the CA3 subfield of the hippocampus. While
GCs respond transiently to PP inputs, SGCs can fire persistently
in response to brief synaptic input. Axon collaterals of both GCs
and SGCs synapse on mossy cells (MCs) in the dentate hilus.
(Right) To probe the structure of the dentate’s persistent represen-
tations, we implanted an array of four stimulating electrodes
(labeled “A,” “B,” “C,” and “D”) into the perforant path. We
transiently stimulated the PP using one stimulating electrode at a
time and then recorded from downstream MCs. The MCs receive
persistent synaptic inputs from semilunar granule cells, in the

molecular layer (ML) of the dentate gyrus. The granule cell layer
(GCL) is also shown. (B) Mean EPSP frequency response trajecto-
ries of the three recorded MCs, in response to four different stim-
uli (labeled “A,” “B,” “C,” and “D”). (C) Responses to the four
stimuli on each of the five trials are shown. The circles are data
recorded 2 s after stimulation, whereas the squares are 20 s post-
stimulation. As the time passes after stimulation, the responses to
different stimuli drift toward the origin and blend together, hin-
dering the representation. (D) (Blue curve) Accuracy of the mne-
monic representation, quantified by fraction of correctly classified
responses, as a function of when they occurred after the stimulus
offset. Error bars are 95% confidence intervals, using data from
all nine slice experiments. Red horizontal line represents chance
performance. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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and used that as our guess for the stimulus that generated the
test data point. We used K 5 5 and verified that other choices
of K yield very similar results. After recording the guesses for
all the recorded data points, we computed the fraction of such
guesses that were correct in a given epoch and averaged the
results over all the nine slice experiments.

We emphasize that the test point is not used in building the
classifier (i.e., the test data point is not allowed to be its own
neighbor). However, one potential concern with our approach
is that the response data points used in building the classifier
include those recorded on the same trial as the test point
(albeit at different epochs). Data points recorded on the same
trial may be atypically similar, posing a potential confound to
our analysis. One possible way to address this concern would
be to modify the kNN analysis so that, in classifying the test
point, the classifier uses only responses recorded on trials other
than the one from which the test point was taken. This
approach, however, is problematic because the number of trials
is small (3–5), and, so, removing a whole trial makes the classi-
fier perform very poorly (regardless of the correlations between
the data points).

However, we still wanted to verify that our classification
result is not confounded by the autocorrelation (within each
trial). To do this, we generated surrogate data via a method
(described below) that is guaranteed to yield independence of
neighboring time points, even within the same trial. To do
this, we did the following:

1. For each experiment, we went through the data stimulus-by-
stimulus and epoch-by-epoch. Thus, for each stimulus/
epoch, we extracted the EPSP rates of the three cells on the
three to five different trials.

2. We computed the mean and covariance (over trials) of these
data points.

3. We generated surrogate data by drawing Gaussian random varia-
bles with the same mean and covariance as the actual data. For
consistency with the analysis of the actual data and with the
“random rotation” analysis (described below), we generated the
same number of surrogate trials as there were in the actual data.

4. We repeated Steps 1–3 independently for each epoch. Accord-
ingly, the different epochs on a given surrogate trial are no more
correlated than are data points from different surrogate trials.

5. We repeated this surrogate data-generation procedure for all
different stimuli from a given experiment and performed the
kNN analysis as described earlier.

6. We repeated Steps 1–5 for all the nine slice experiments and
averaged the results.

This analysis shows very similar classification rates (not
shown) as did the analysis done on the “actual” data, giving us
added confidence that the kNN performance is not con-
founded by autocorrelation within trials.

Measuring Distances From Mean Trajectories

To understand where (in the space of possible neural
responses) the trial-to-trial variability is most concentrated, we

measured the deviations of responses on individual trials from
the mean stimulus-evoked trajectories. This measurement is
described schematically in Figure 3A.

To carry out this measurement, we computed the mean tra-
jectory following each stimulus by averaging over all the
responses to that stimulus within each epoch (mean trajectories
shown in Figs. 2B and 3A). We then interpolated between
these (22) data points to “fill in the curve” and measured the
Euclidean distance from each data point to the nearest point
on the mean trajectory, to yield the data shown in Figure 3C.
Similarly, for the results in Figure 6B, we measured the distan-
ces from each response data point to the nearest point on the
mean trajectories associated with stimuli other than the one
that generated the responses.

Measuring Distances Between Mean Trajectories

To estimate the distances between the mean stimulus-evoked
trajectories (Fig. 3D), we took each trajectory, and, for each
epoch, we found the nearest (in Euclidean distance) of the
other mean trajectories. We then recorded the distance between
these nearest-neighboring trajectories at this epoch. This proce-
dure was repeated for all epochs, to trace out the distance ver-
sus time curve: data shown are averaged over all the stimuli
and experiments.

Measuring Average Levels of Variability

To estimate the overall level of trial-to-trial variability in the
neural activities (Fig. 3E), we took all responses of a given cell
to a given stimulus, in a given poststimulation epoch. We then
computed the trial-to-trial variance of these responses and aver-
aged that quantity over all the three cells, to quantify the over-
all levels of trial-to-trial variability. To compute the coefficient
of variation (Fig. 3B), we divided the square root of each cell’s
variance by its mean response (again, for each epoch and stim-
ulus) and averaged those values over all the cells.

Perturbing the Structure of the Response
Variability

To construct surrogate data in which the “confined” structure
of the trial-to-trial variability is interrupted, we did the following.
For each stimulus and each poststimulation epoch, we computed
the mean response (over all the trials) and subtracted that from
the responses on each trial. This yielded the residuals, which are
three-dimensional vectors describing the trial-to-trial fluctuations
in the population responses. We then randomly rotated these vec-
tors in the three-dimensional space and added these rotated resid-
uals to the mean responses (Fig. 4A,B).

To randomly rotate the residual vectors—thereby redistribut-
ing trial-to-trial variability in random directions in the response
space—we generated random rotation matrices. We then multi-
plied the residual vectors by these rotation matrices. A different
random rotation was applied for each poststimulation epoch.

For the results in Figure 5 that compare the decoding per-
formance on the surrogate vs. actual data, we estimated the
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decoding performance with our kNN algorithm for each ran-
dom rotation and averaged the result over 10,000 surrogate
datasets, each of which had different random rotations.

RESULTS

In Vitro Persistent Mnemonic Representations

Herein, we revisit the data from a previous study (Hyde and
Strowbridge, 2012). The preparation consists of horizontal slices
of rat brain, which pass through the hippocampal formation. In

each slice, we identified the PP, which provides inputs to the hip-
pocampus from the entorhinal cortex), and implanted an array of
stimulating electrodes into the PP (Fig. 2A). We then transiently
stimulated the PP with brief (200 ls) shocks from one of the
four stimulating electrodes, and thereafter, we recorded intracell-
ularly from the triplets of MCs in the DG. As shown in Hyde
and Strowbridge (2012), we extracted from these intracellullar
recordings the rates of EPSPs received by our three MCs. Hilar
MCs have extensive dendritic arbors, and, therefore, they broadly
sample the population of upstream granule cells and semilunar
granule cells (Fig. 2A) (Williams et al., 2007; Larimer and Strow-
bridge, 2010). For our analyses, we considered the three MCs’

FIGURE 3. Structure of the trial-to-trial variability in the
evoked responses. (A) Responses of one mossy cell triplet to one
location of stimulation. Each dot represents the mean EPSP fre-
quencies in a 1-s window on a given trial; five trials are shown.
The colors of the dots indicate the time since stimulation. Black
line represents the mean trajectory, averaged over trials. (B) Aver-
age coefficient of variation (standard deviation divided by mean)
of the neural responses, as a function of when they were observed.
(C) For each data point, we measured the distance to the nearest
point on the mean trajectory. The mean of these distances (aver-
aged over trials) is shown as a function of time since stimulation.
During the first ~12 s of the responses, these distances decrease.
(D) For comparison, we also show the mean squared distances

between the mean trajectories and their nearest-neighboring trajec-
tory. (E) Average (over cells and stimuli) of the trial-to-trial var-
iance in neural responses, as a function of time since stimulation.
The (average) level of variability increases over the first ~10 s of
the responses and then decreases. Thus, during the first ~10 s of
the responses, the overall response variability increases (BE) while
the distances from the data points to the mean trajectories
decrease (C), underlining the fact that response variability is not
evenly spread over the space of possible neural activities. Error
bars in all the panels represent the standard error of the mean
(SEM) over all the four stimuli and nine slice experiments. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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EPSP rates over 1-s-long intervals at different times poststimula-
tion (from 1 s up to >20 s poststimulation). Each stimulus was
repeated three to five times, and the same procedure was per-
formed on nine different slices.

Mnemonic Representations in the Presence
of Noise

To confirm that our preparation does indeed form persistent
mnemonic (symbolic) representations, we attempted to decode

the MC EPSP rates to identify which of the four stimulating
electrodes (labeled “A,” “B,” “C,” and “D”) was used to stimu-
late the PP. For the decoding, we used the kNN algorithm,
which is a simplified form of maximum likelihood estimation
that works well with even modest amounts of data. The kNN
algorithm takes a given response data point and then identifies
the most similar (smallest Euclidean distance) of the other data
points. The algorithm then asks which stimulus was responsible
for the majority of the nearest neighboring response points and

FIGURE 4. Perturbed constrained variability. (A) We con-
structed surrogate data in which the mean trajectories evoked by
each stimulus (black solid curve; data shown are for one stimulus),
and the overall levels of trial-to-trial variability, matched the
recorded data, but the variability was distributed relatively iso-
tropically over the space of neural responses. To do this, we took
the constellations of points recorded at each epoch and rotated
them in a random direction about the mean response recorded at
that epoch; this is shown schematically for the teal data points,
corresponding to responses recorded 8 s poststimulation. (B) The
raw data points observed 8 s poststimulation (teal circles) are
shown alongside an example of the randomly rotated data points
(stars) from that same epoch. (C) For these perturbed surrogate
data, we computed the distance from each response to the mean
response trajectory associated with the applied stimulus. We then

averaged these overall stimuli and experiments and show those dis-
tances as a function of time poststimulation (green curve). This is
similar to the measurement shown schematically in Figure 3A. For
comparison, we also show the same quantity for the actual experi-
mental data, in which the structure of the fluctuations was left
intact (blue curve; same data as in Fig. 3C). (D) As in Figure 3E,
we measured the average trial-to-trial variability in the surrogate
responses (with perturbed trial-to-trial variability) as a function of
time. By construction, this level of variability is identical to that
which was displayed by the actual (unperturbed) responses (in Fig.
3E). Error bars in all panels represent the standard error of the
mean (SEM) over all the 4 stimuli and nine slice experiments.
[Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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uses that as the guess for the stimulus that caused the response
under consideration. We then recorded this guess for each
response data point and computed the fraction of those guesses
that correctly identified the stimulus that was applied to the
PP. All classifications were performed using a procedure in
which the classifier was constructed without including the test
point. When we repeated our analysis on data with shuffled
stimulus labels, the correct classification rate was approximately
25% for estimating which of four different (roughly equiprob-
able) stimuli was presented—this value is what we use to define
“chance” performance.

For tasks with no fixed delay period, it is important that the
representation can be readout at any time poststimulation. We,
thus, repeated our decoding analysis on the responses observed at
different poststimulation epochs. The data points used in build-
ing the classifier included those recorded at all epochs. We
observed that the responses can identify the applied stimulus at
levels well above chance for more than 20 s after the stimulus is
received (Fig. 2D, blue curve, p< 1026 for all epochs, based on a
binomial test, based on EPSP frequencies in 1-s-long windows).

The kNN analysis presented herein improves upon the linear
discriminant analysis (LDA) we used in Hyde and Strowbridge

(2012) because it does not assume that the responses to differ-
ent stimuli will be linearly separable and because it was applied
to the neural responses in shorter time windows, thereby show-
ing that the representation can be readout relatively quickly,
without requiring long integration times.

The sustained nature of the representation is interesting
because the responses change dramatically over the poststimula-
tion period (Fig. 2B; mean trajectories following each different
stimulus from one of our nine slice experiments) and because
the level of trial-to-trial variability in the neural responses—
which corrupts the stimulus representation—increases signifi-
cantly following stimulation (Fig. 3E, p< 0.05 for comparisons
of overall variability at t 5 1 s and t 5 12 s poststimulation,
based on a two-sided paired t-test; Fig. 3B, p< 1026 for com-
parisons of coefficient of variation at t 5 1 s and t 5 12 s post-
stimulation, based on a two-sided paired t-test).

Variability Is Unevenly Spread Out Over the
Neural Response Space

We observed (earlier) that the neural responses evolve dra-
matically and show a significant increase in variability during
the period following stimulation but can, nevertheless, be
decoded on a trial-by-trial (and epoch-by-epoch) basis to iden-
tify the applied stimulus. On the basis of the theoretical studies
about signal versus noise in the nervous system (Averbeck
et al., 2006; da Silveira and Berry, 2014; Hu et al., 2014), we
postulated that the neural responses are confined to relatively
nonoverlapping regions of the neural response space, with a
different region corresponding to each applied stimulus. In
other words, the set of responses to stimulus “A” might lie in a
thin cylindrical region around the black curve (mean trajectory)
in Figure 2B, whereas the set of responses to stimulus “C”
might lie in another cylindrical region around the green curve
in Figure 2B, and so on. The thinness of these cylinders
reduces the extent to which they can overlap. For contrast, if
the trial-by-trial responses were relatively spread out away from
the mean trajectories—corresponding to “fat” cylinders—this
would allow the responses to different stimuli to overlap more,
thereby hindering the representation of distinct stimulation
patterns (see, for example, Fig. 1A,B).

To investigate this hypothesis, we took each response to
stimulus “A” (measured at different epochs poststimulation)
and measured the Euclidean distance from those data points to
the nearest point on the mean trajectory that the responses fol-
low after the application of stimulus “A” (Fig. 3A): this effec-
tively measures the radius of the above-described “cylinder”.
We then repeated this analysis on the responses to the other
stimuli, in all the cases measuring the distance from each data
point to the nearest point on the mean trajectory following the
applied stimulus (Fig. 3C). A comparison of Fig. 3B,C,E shows
that, for the first �10–15 s of the neural responses, the overall
variability in the responses increases (Fig. 3B,E), but that vari-
ability is not evenly distributed in all the directions in the
response space; indeed, the spread of trajectories away from the
mean trajectory actually decreases during that period (Fig. 3C,

FIGURE 5. Variability constrained to lie near mean trajecto-
ries enhances pattern separability in the dentate gyrus. We used
our KNN classifier to identify the stimulus responsible for the
neural responses (as in Fig. 2D). The classifier was applied to both
the actual experimental data (blue bars) and the surrogate data
(green bars) in which the structure of the trial-to-trial variability
was perturbed (as in Fig. 4A,B), reducing the tendency of fluctua-
tions to lie along/near the mean stimulus-evoked trajectories. The
classification was performed on the mean EPSP frequencies meas-
ured in 1-s windows poststimulation, and the bar heights indicate
the fraction of successfully classified responses, in four different
poststimulation epochs. Error bars indicate 95% confidence inter-
vals. To generate the green bars, we repeated the random rotation
procedure 10,000 times, yielding enough surrogate trials that the
error bars associated with the performance values are vanishingly
small. At each epoch, we show the P for comparisons between the
performance obtained with the raw and the surrogate data; these
P values come from binomial tests. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]
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p< 1023 for comparisons of distance from mean trajectory at
t 5 1 s and t 5 12 s poststimulation, based on a two-sided
paired t-test). This indicates that the increasing variability (Fig.
3B,E) is not evenly spread out over the neural response space;
the variability is structured such that the neural responses are
constrained to lie relatively near the mean stimulus-evoked
trajectories.

For comparison with the levels of variability in the neural
responses, we also show the distances between each of the
mean trajectories and their nearest-neighboring mean trajectory
(Fig. 3D). These distances decrease over time. Accordingly, if
the response data points did not converge to the mean trajecto-
ries over time, the responses to different stimuli would quickly
blend together, destroying the representation. However, the
responses do converge toward the mean trajectories (Fig. 3C),
and, hence, the representational accuracy stays relatively high
(Fig. 2D).

Having Variability Constrained to Lie Near the
Mean Trajectories Imparts Robustness to the
Representation

We have seen that, despite significant variability (Fig. 3B,E),
the neural responses can be decoded epoch-by-epoch to iden-
tify the applied stimulation pattern (Fig. 2D). Is the robustness
of the representation a result of the fact that the variability is
unevenly spread over different parts of the neural response
space, such that the neural responses are constrained to lie near
the mean stimulus-evoked trajectories (Fig. 3C)?

To address this question, we constructed surrogate data in
which the mean trajectories and the levels of trial-to-trial vari-
ability in the neural responses were the same as in our experi-
mental data, but the “constrained” structure of the trial-to-trial
variability was disrupted by randomly rotating the constella-
tions of data points obtained at each epoch about the mean
response trajectory (Fig. 4A,B; see Methods for details). A dif-
ferent random rotation was applied at each epoch.

This procedure yielded surrogate data that have the same
mean trajectories and the same overall levels of variability as in
the original data (compare Figs. 3E and 4D, which are identi-
cal by construction). However, the variability in the surrogate
data is spread out in random directions in the response space
and not necessarily constrained to be near the mean trajectory.
As a result, the surrogate data do not show the same decrease
over time in the distances from their mean trajectories as do
the actual experimental data (Fig. 4C, p< 0.05 at all epochs
for comparisons of the distances to the mean trajectories in the
surrogate data and the actual data, based on a paired two-sided
t-test). Thus, our random rotation procedure maintained the
mean response trajectories, and the overall levels of trial-to-trial
variability, but successfully disrupted the confined nature of the
neural variability.

We could, thus, compare the stimulus representation formed
by the actual, and the surrogate data, to test the impact of the
confined response variability on the population code. To do
this, we repeated our kNN classification on the surrogate
responses and observed that they were significantly less decod-
able to identify the location of applied stimulation than were

FIGURE 6. Responses are typically far from the “wrong” tra-
jectories. (A) Mean response trajectories of one mossy cell triplet
following two locations of stimulation (“A” and “B,” correspond-
ing to black and red solid lines, respectively). Also shown are the
mean EPSP frequencies in 1-s windows on individual trials in
which stimulus “A” was presented; five such trials are shown
(black dots). The schematic arrows indicate the measurement of
distances from these response data points to the nearest points on
the two mean trajectory curves. (B) (Blue curve; same as Fig. 3C)
We computed the distance from each recorded response to the
nearest point on the mean trajectory associated with the applied
stimulus. For comparison, we also computed the distances from

the recorded responses to the nearest points on the mean trajecto-
ries associated with stimuli other than the one that was actually
applied (red curve: mean 6 SEM over the nine slice experiments
and four stimuli). For example, if the response was evoked by
stimulus “A,” we measured the (average) distance to the mean tra-
jectories evoked by stimuli “B,” “C,” and “D.” The distances to
the mean trajectories evoked by “other” stimuli (red curve) are
typically much larger than the distances to the mean trajectories
evoked by the “correct” stimulus (blue curve). [Color figure can
be viewed in the online issue, which is available at wileyonlineli-
brary.com.]
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the real neural responses (Fig. 5; blue bars are for the experi-
mentally observed “raw” responses, green bars are for artificially
perturbed surrogate responses. Green and blue bars are differ-
ent, with p< 0.01, for the epochs of 1–5 s poststimulation, 6–
10 s poststimulation, and 11–15 s poststimulation, based on a
binomial test, and green bars are below blue ones for all
epochs). This effect was strongest in the first 10 or 15 s poststi-
mulation, which is the period in which response variability is
the largest (Fig. 3E). Our results indicate that the structure of
the trial-to-trial variability in the hilar populations, wherein
that variability is constrained to lie near the mean stimulus-
evoked trajectories, increases the robustness of mnemonic rep-
resentations by reducing the similarity between responses to
different stimuli.

While the stimulus decoding performance obtained with the
raw responses, and that obtained with the surrogate responses,
are statistically significantly different, that difference is—
depending on the epoch—somewhat modest in magnitude.
This is because the mean trajectories are fairly well-separated in
the space of neural responses. Accordingly, the responses to a
particular stimulus (say, “A”) are typically quite far from the
paths associated with the other stimuli (“B,” “C,” and “D” for
this example) (Fig. 6B). Consequently, an increase in the dis-
tances of responses from the paths associated with the applied
stimulus, caused by the perturbation to the structure of trial-
to-trial variability (as in Fig. 4C), can have a modest impact
on stimulus decodability. For contrast, were the mean trajecto-
ries closer together, the impact could be much larger. We, thus,
expect that the phenomenon we identified—of variability con-
strained to lie near the appropriate response “paths” —could
have a larger impact on pattern separation in situations where
there are more different patterns to store and/or separate. In
that situation, the paths associated with different patterns will
be—on average—closer together, and, so, the importance of
responses staying close to the correct paths will be magnified.

DISCUSSION

Herein, we report that the trial-to-trial variability of
stimulus-specific persistent responses recorded in populations of
hilar neurons is constrained to lie near the mean stimulus-
evoked trajectories. This structure significantly facilitated
decoding of which stimulation pattern was presented and may,
thus, be an important aspect of the dentate’s ability to sepa-
rately encode different patterns of applied stimuli (O’Reilly
and McClelland, 1994; Leutgeb et al., 2007; Myers and
Scharfman, 2009). Moreover, because neural systems typically
display high levels of variability (Romo et al., 2003; Averbeck
et al., 2006; Faisal et al., 2008; Hu et al., 2014) and the
“confined” structure provides robustness against this “noise,”
our results may have implications for other preparations.

In the DG, the consistent average response trajectories we
defined likely reflect the triggering of plateau potentials in sim-

ilar subgroups of semilunar granule cells (SGCs) on each trial
(Williams et al., 2007; Larimer and Strowbridge 2010).
Response variability, in turn, may arise from trial-to-trial differ-
ences in the durations of these plateau potentials. This mecha-
nism would force population responses in downstream hilar
neurons to follow similar trajectories through a high dimen-
sional neural response space, albeit with different velocities on
each trial, depending on when the plateau potentials begin to
decay in each presynaptic SGC. Accordingly, though there may
be significant trial-to-trial variability in the neural responses,
those responses would nonetheless all lie near the same mean
trajectory (as we observed herein).

In addition to enhancing the ability to accurately decode
population responses at one specific time point (e.g., at the off-
set of a visual cue in a working memory task, as in Funahashi
et al., 1993), the response structure we identified in the DG
activities enables time-independent decoding of population
responses. In particular, the stimulus is persistently encoded in
the identity of the path on (or near) which the responses lie.
This finding suggests novel time-invariant mechanisms for
decoding transient inputs and predicts that biological systems
that decode time-invariant memories may take advantage of
these structures. It may be possible that downstream neural
structures perform “path-based” decoding rather than decoding
based on static patterns of activity. Given the importance of
persistent representations, formed by dynamical neural activities
(Druckmann and Chklovskii, 2012), we suspect that similar
representational structures might be quite ubiquitous within
the nervous system.

Relatedly, there are many prior reports of neural responses
being constrained to low-dimensional regions of the space of
possible neural responses (Seung, 1996; Wimmer et al., 2014;
Ganguli et al., 2008; Yoon et al., 2013). The current study
adds to this literature the observation that trial-to-trial vari-
ability (in addition to mean neural responses) in the dentate
is also confined to low-dimensional subspaces. In vivo, these
low-dimensional neural-representational structures have the
potential to reflect the animal’s memories and/or decision-
making, and, thus, their identification in awake-behaving ani-
mals could yield major advances in connecting brain function
to behavior.
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