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Abstract

Parkinson's disease (PD) is highly comorbid with sleep dysfunction. In contrast to

motor symptoms, few therapeutic interventions exist to address sleep symptoms in

PD. Subthalamic nucleus (STN) deep brain stimulation (DBS) treats advanced PD

motor symptoms and may improve sleep architecture. As a proof of concept toward

demonstrating that STN‐DBS could be used to identify sleep stages commensurate

with clinician‐scored polysomnography (PSG), we developed a novel artificial neural

network (ANN) that could trigger targeted stimulation in response to inferred sleep

state from STN local field potentials (LFPs) recorded from implanted DBS electrodes.

STN LFP recordings were collected from nine PD patients via a percutaneous cable

attached to the DBS lead, during a full night's sleep (6–8 hr) with concurrent

polysomnography (PSG). We trained a feedforward neural network to prospectively

identify sleep stage with PSG‐level accuracy from 30‐s epochs of LFP recordings. Our

model's sleep‐stage predictions match clinician‐identified sleep stage with a mean

accuracy of 91% on held‐out epochs. Furthermore, leave‐one‐group‐out analysis also

demonstrates 91% mean classification accuracy for novel subjects. These results,

which classify sleep stage across a typical heterogenous sample of PD patients, may

indicate spectral biomarkers for automatically scoring sleep stage in PD patients with

implanted DBS devices. Further development of this model may also focus on adapt-

ing stimulation during specific sleep stages to treat targeted sleep deficits.
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1 | INTRODUCTION

Sleep is crucial to the regulation of physiological and cognitive func-

tions in humans, and when disordered greatly diminishes quality of

life (Giuditta et al., 1995; Pace‐Schott & Hobson, 2002) and

adversely affects nervous system repair (Brager et al., 2016; Lucke‐
Wold et al., 2015). Parkinson's disease (PD) is a neurodegenerative

disorder that exhibits a high degree of comorbidity with a wide

range of sleep disorders (De Cock, Vidailhet, & Arnulf, 2008; Tekri-

wal et al., 2017). The diagnosis and treatment of PD primarily focus

on the overt motor symptoms (Postuma et al., 2015). However,

there is increasing interest in understanding the impact of non‐motor

symptoms, such as sleep dysfunction, on overall disease burden

(Chaudhuri, Healy, & Schapira, 2006), and in identifying treatments

for these symptoms. With the onset of motor fluctuations or break-

through tremor despite optimal medical management, subthalamic*Co‐senior authors who made equal contributions to this work.
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nucleus (STN) deep brain stimulation (DBS) surgery has become the

reference standard for treating the motor symptoms of advanced PD

(Bronstein et al., 2011; Hamani, Saint‐Cyr, Fraser, Kaplitt, & Lozano,

2004). Interestingly, several studies have found that STN‐DBS can

improve sleep in PD (Arnulf et al., 2000; De Cock et al., 2011;

Iranzo, Valldeoriola, Santamaría, Tolosa, & Rumià, 2002). In our previ-

ous work, using local field potentials (LFPs) recorded from DBS elec-

trodes implanted in STN for the treatment of PD, we identified

unique spectral patterns within STN oscillatory activity that corre-

lated with distinct sleep cycles, a finding that might offer insight into

sleep dysregulation (Thompson et al., 2018). One extension of this

work was to determine whether LFP information recorded from the

STN could be used in real time to objectively identify sleep cycles

for targeted therapy using DBS. In other words, the sleep benefit

derived from STN stimulation could potentially be optimized using

an adaptive stimulation algorithm that is aimed at specific sleep

stages. In this study, we demonstrate the use of a feedforward artifi-

cial neural network that predicts sleep stage from LFP recordings,

within the STN, with high precision.

2 | MATERIALS AND METHODS

2.1 | Patient demographics

This study was approved by the Institutional Review Board of the

University of Minnesota, where the surgical and recording proce-

dures were performed. All consenting study subjects (n = 9) carried a

diagnosis of idiopathic PD (Figure 1a). Subjects were unilaterally

implanted in the STN with a quadripolar DBS electrode (model

#3389: Medtronic Inc., Fridley, MN), per routine surgical protocol

(Abosch et al., 2012). Experimental details for the recording setup

have been previously published (Thompson et al., 2018). Basic char-

acterization of these data was previously reported in Thompson et

al. (2018).

2.2 | Signal processing of local field potentials

Signal processing of the raw STN LFP signals was previously

described in Thompson et al. (2018). Briefly, after preprocessing, the

four LFP channels (0, 1, 2 and 3; one recording from each of the

four electrical contacts of the implant) were converted into three

bipolar derivations (LFP01, LFP12 and LFP23) by sequentially refer-

encing them. Power spectral density (PSD) was estimated using a

fast Fourier transform from a 2‐s‐long sliding window (Hamming)

with 1‐s overlap. The final time‐evolving spectra had 15 s time and

0.5 Hz frequency resolution. For each subject, LFP data selected for

further analysis were based on the location of the DBS electrode

contact within the STN and this was verified by the following: (a)

intraoperative microelectrode recordings that identified cells with fir-

ing characteristics consistent with STN neurons; (b) anti‐Parkinsonian
benefit and side‐effects of macrostimulation; (c) preoperative stereo-

tactic T1‐ and T2‐weighted images merged to a postoperative MRI

demonstrating the position of the DBS electrode within the borders

of STN; (d) the use of Framelink (Medtronic Corp.) software to anal-

yse DBS position on the postoperative MRI; and (e) evaluation of

the efficacy of post‐programming stimulation for contralateral motor

symptoms for each subject (Ince et al., 2010). Selection of which

contact(s) to use for study recordings was based on the STN contact

F IGURE 1 (a) Demographic data and
sleep stage characteristics for Parkinson's
disease (PD) subjects participating in this
study (n = 9). Percent improvement in PD
reflects the change in the Unified
Parkinson's Disease Rating Scale (UPDRS)
motor scale before and after DBS surgery.
(b) Hypnograms from four representative
subjects in this study, indicative of
common sleep architecture deficits
reported for individuals with PD. (c)
Distribution of frequency band power
contribution to sleep stage for all subjects.
AWM, awake with movement; AWOM,
awake without movement; REM, rapid eye
movement
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(s) associated with peak beta‐spectrum activity as this feature corre-

lates with the optimal programming contact(s) for the treatment of

contralateral motor symptoms (Ince et al., 2010). These criteria were

used to ensure that the selected contact was most reliably in the

same relative anatomical location across patients to permit generaliz-

ability of the model.

2.3 | Video‐PSG scoring

The polysomnographic electrode montage used was the following:

F3–C3, P3–O1, F4–C4 and P4–O2, EOGL–A2, EOGR–A1, and chin

EMG (Iber, Ancoli‐Israel, Chesson, & Quan, 2007). Sleep stages were

determined by analysis of 30‐s epochs of the PSG, by a sleep neurol-

ogist, with each epoch classified as Awake or as belonging to one of

the following sleep stages: rapid eye movement (REM), or the non‐
REM (NREM) stages of N1, N2 or N3.

2.4 | Model description

We trained a feedforward artificial neural network (ANN) with a sin-

gle hidden layer (Figure 2b) to prospectively identify whether a given

30‐s epoch of STN‐LFP recording took place during one of three

possible states: REM, NREM or Awake. Inputs to the model were

eight separate frequency band power bins, averaged over 30 s: delta

(0–3 Hz), theta (3–7 Hz), alpha (7–13 Hz), low beta (13–20 Hz), high

beta (20–30 Hz), and low gamma (30–90 Hz), high gamma (90–200)
and high frequency oscillations (200–350). Each frequency range

input feature was normalized independently by subtracting the mean

and scaling by the variance of feature. The ANN output is a proba-

bility that the measured epoch occurs during one of the three possi-

ble states. Optimal ANN architecture was chosen based on the

hyperparameter optimization detailed below. The ANN model utilizes

a single hidden layer to encode the normalized spectral power bands

F IGURE 2 (a) Representative
spectrogram of a local field potential (LFP)
recording acquired over the course of one
full night's sleep from a deep brain
stimulation (DBS) electrode implanted into
the subthalamic nucleus (STN). A PSG‐
informed hypnogram assessed by a sleep
expert is aligned with the LFP recordings
(red line; AWM, awake with movement;
AWOM, awake without movement; REM,
rapid eye movement; N1–3, non‐rapid eye
movement stages 1–3). (b) Schematic
representation of the feedforward classifier
used to predict sleep stage from 30‐s
labelled LFP epochs. The model is
composed of an input layer (LFP frequency
power bands), a hidden layer and an
output layer (predicted sleep stage). (c)
Comparison of hypnogram assessed by a
sleep expert (top; black) and ANN‐
predicted hypnogram (bottom; red) from
patient 1 with mean classification accuracy
of 87%
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within 32 features by calculating weighted sums of the input fre-

quency power and scaling them by a non‐linear function. Weighted

linear combinations of these 32 features are then used by the net-

work to compute sleep state probabilities with application of a soft-

max non‐linearity.

2.5 | Hyperparameter optimization

The architecture of the ANN model we describe was determined by

evaluating classification accuracy across the spectrum of network

hyperparameters. We combinatorically varied the non‐linearity of

each unit (Sigmoid, ReLu and Tanh), the number of units in the

hidden layer(s) (16, 32 or 64) and the number of hidden layers (1 or

2). Randomly initialized models in replicates of five were each

trained and tested on a random 80:20 partition of all data. In gen-

eral, we observed that more complex models with a larger number

of total units and multilayer networks produced minor increases in

classification accuracy, but these performance variations were not

statistically significant. We opted to use 32 units in a single hidden

layer with the biology‐inspired rectified linear units (ReLu; (Hahn-

loser, Sarpeshkar, Mahowald, Douglas, & Seung, 2000)) as the non‐
linearity. We chose this configuration because it achieved classifica-

tion accuracy on a par with the best‐performing model with 10‐fold
fewer parameters to minimize overfitting training data.

F IGURE 3 (a) In the “hybrid” strategy a random 80% of each patient's local field potential (LFP) recordings were pooled to train the model.
Model accuracy and Cohen's κ were evaluated on the withheld 20% from each patient. This analysis was replicated in four other random
80:20 splits to control sampling bias. Cohen's κ magnitude guidelines derived from Fleiss & Cohen (1973). (b) A leave‐one‐group‐out (LOGO)
cross‐validation strategy was used to test generalizability to unseen patients. Each data point represents a model trained with a specific patient
excluded from its training data. Model accuracy and Cohen's κ were evaluated on data from the kept‐out patient. (c) Confusion matrices of
representative models trained using the LOGO cross‐validation strategy. The first two confusion matrices represent individual subjects and the
final confusion matrix depicts the fraction of epochs with specific class labels for all subjects. REM, rapid eye movement; NREM, non‐rapid eye
movement
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3 | RESULTS

3.1 | Model performance and validation

We evaluated the ANN model's sleep stage classification perfor-

mance and its ability to generalize new predictions under two

conditions. Performance was evaluated using accuracy

Aobserved ¼ Correct
CorrectþIncorrect

� �
and Cohen's κ κ ¼ Aobserved�Achance

1�Achance

� �
. Chance

accuracy Achanceð Þ was calculated as originally described (Cohen,

1960).

First, we tested the model's ability to predict sleep stages on

novel examples from patients included in the training set. We pooled

80% of each patient's 30‐s STN‐LFP recording epochs across all nine

patients to train the model. The remaining 20% of the withheld

epochs were used to evaluate the model's performance on novel

examples from familiar patients. The train‐test fractions (80:20) were

sampled randomly for each patient and performance was averaged

in replicates of five to prevent sampling bias. The model was able to

correctly predict sleep stage from STN‐LFP epochs with a mean

accuracy of 91% (Figure 3a).

Training a model from scratch for each new patient is often

intractable. Therefore, the model's ability to perform well on never‐
seen subjects demonstrates its sensitivity to the salient spectral

features of sleep across individual variations. To test this level of

generalization, the model was trained on all epochs from eight of

the nine patients. Subsequently, model performance was evaluated

on all epochs from the kept‐out patient. Thus, nine different mod-

els were trained, each with a specific patient withheld from its

training data. As above, model performance was quantified using

accuracy and Cohen's κ (Figure 3b). Across all models, mean classi-

fication accuracy of 91% was observed. Finally, because the num-

ber of epochs of each observed sleep state varies between

patients in the dataset, we produced confusion matrices for the

test patient of each model and show representative examples from

patients with significantly imbalanced sampling as well as a sum-

mary matrix averaged across all models (Figure 3c). This demon-

strates that the model's error rate varies as a function of sleep‐
stage representation, with less frequent stages showing a higher

error rate (see Table 1).

4 | DISCUSSION

In this report, we demonstrate the novel use of an optimized ANN

to predict sleep stage from 30‐s epochs of LFP recorded from the

STN of PD subjects. Based on results from hyperparameter optimiza-

tion, we used a network architecture of a single hidden layer con-

taining 32 artificial neurons with ReLu non‐linearities (Figure 2b). We

evaluated the model's ability to generalize to new patients by using

a LOGO (leave‐one‐group‐out) strategy for cross‐validation and

attained mean classification accuracy of 91% averaged across all

patients.

The ability of this ANN model to accurately predict sleep stages

based on STN‐LFP data recorded from novel PD patients is a critical

improvement over our previously published effort to generate a pre-

dictive model. In our prior work, we used a support vector machine

(SVM) model that performed well when tested on novel epochs

derived from the familiar patient used to train the model but failed

to generalize to novel subjects (Thompson et al., 2018). For simplifi-

cation of model development, the different NREM stages (i.e. NREM

1–3) were aggregated into a single class. However, future develop-

ment will focus on classification of the non‐REM substages, as they

represent distinct states and underlie unique sleep processes. Our

current study is the first to use direct intracranial recordings from

human basal ganglia to classify and match unseen PSG‐labelled elec-

trophysiological signals. Although the overall accuracy of the model

for all sleep stages combined was well above chance (91%), perfor-

mance on REM sleep stages was lower than the average perfor-

mance (77%). Decreased performance for REM could be a result of

the lower representation across subjects (see Table 1), or it may

reflect the challenge in identifying the REM state from PSG in this

patient population.

This model can be implemented in forthcoming improved DBS

neurostimulators to detect sleep stage solely from features of STN‐
recorded LFP, enabling the implementation of closed‐loop stimula-

tion strategies for treating sleep dysregulation in PD patients. This

would serve a crucial unmet need in this patient population (Chaud-

huri et al., 2006), as there are currently no effective treatments with

a low side‐effect burden (Arnulf et al., 2000). Although DBS is an

established therapy for the treatment of motor symptoms of Parkin-

son's disease, the effect of DBS on the sleep disturbances of Parkin-

son's disease has not yet been fully characterized, and the

mechanism(s) underlying the improvements reported in sleep quality,

efficiency and duration remains to be elucidated (Sharma, Sengupta,

Chitnis, & Amara, 2018).

Our model's ability to correctly predict sleep stage in novel sub-

jects may imply the existence of a universal LFP spectrum sleep

TABLE 1 Summary for all subjects of the epoch representation
and model accuracy for each of the following sleep stages: Awake,
rapid eye movement (REM) and an aggregate of the non‐rapid eye
movement (NREM) substages (N1, N2 and N3)

Awake NREM REM

Subject
ID

% of
epochs

%
correct

% of
epochs

%
correct

% of
epochs

%
correct

1 50 91 42 90 9 47

2 46 94 51 94 2 55

3 88 98 11 69 1 0

4 16 82 73 95 11 84

5 53 99 43 96 3 39

6 88 96 12 100 0 NA

7 17 96 66 98 18 83

8 27 94 61 85 12 83

9 40 96 60 100 0 NA

Percent correct values were derived from the leave‐one‐group‐out analy-
sis.

NA, not available.
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signature within STN. In our investigations to date, this STN localized

spectral signature appears conserved across patient demographics,

robust to variances in implantation location, and detectable from the

aggregate activity of several thousands of neurons. In future work, we

intend to characterize this spectral signature space using generative

ANN models of LFP oscillations recorded from within the STN. This

effort will extend our understanding of the relationship between sleep

dynamics and oscillating field potentials in the basal ganglia.
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